Gamma radiation is produced via both of nuclear fuel and shield materials. Photon interaction is known with appropriate accuracy, but secondary gamma ray production known much less. The purpose of this work is studying secondary gamma ray production data from neutron induced reactions in iron and lead by using MCNP code and modern nuclear data as ROSFOND, ENDF/B-7.1, JEFF-3.2 and JENDL-4.0. Results of calculations show that all of these nuclear data have different photon production data from neutron induced reactions and have poor agreement with evaluated benchmark experiment. The ABBN-RF multigroup cross-section library is based on the ROSFOND data. It presented in two forms of micro cross sections: ABBN and MATXS formats. Comparison of group-wise calculations using both ABBN and MATXS data to point-wise calculations with the ROSFOND library shows a good agreement. The discrepancies between calculation and experimental C/E results in neutron spectra are in the limit of experimental errors. For the photon spectrum they are out of experimental errors. Results of calculations using group-wise and point-wise representation of cross sections show a good agreement both for photon and neutron spectra.
The author has developed a new version of his Fortran multiprecision computation system that is based on the Fortran-90 language. With this new approach, a translator program is not required - translation of Fortran code for multiprecision is accomplished by merely utilizing advanced features of Fortran-90, such as derived data types and operator extensions. This approach results in more reliable translation and also permits programmers of multiprecision applications to utilize the full power of the Fortran-90 language. Three multiprecision datatypes are supported in this system: multiprecision integer. real and complex. All the usual Fortran conventions for mixed mode operations are supported, and many of the Fortran intrinsics, such as SIN, EXP and MOD, are supported with multiprecision arguments. This paper also briefly describes an interesting application of this software, wherein new number-theoretic identities have been discovered by means of multiprecision computations.
Mixed In Key 4 Vip Code Crack.epub
The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 1) 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 3) 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.
The constant capacitance model was used to describe phosphate adsorption on hematite, kaolinite, and a kaolinite-hematite system (k-h). The model assumes a ligand exchange mechanism and considers the charge on both adsorbate and adsorbent. The model is shown to provide a quantitative description of phosphate adsorption on these, including the effect of varying pH values. The computer program Ma-Za 2, a program that fits equilibrium constants to experimental data using an optimization technique, was used to obtain optimal values for the anion surface complexation constants on hematite, kaolinite, and a kaolinite-hematite system, while the PC program Ma-Za 1 in Q-Basicmore language was used for the application of the constant capacitance model. The model represented adsorption of phosphate anions well over the entire pH range studied (3.8--9.0). The main advantage of the model is its ability to represent changes in anion adsorption occurring with changes in pH. Extension of the model to describe phosphate adsorption in a mixed system, such as the kaolinite-hematite system, using the surface protonation-dissociation constant of hematite was qualitatively successful. In mixed system the model reproduced the shape of the adsorption isotherms well over the pH range 3.8--9.0. However, phosphate adsorption was overestimated. The hematite and the kaolinite-hematite system were synthesized and identified by X-ray, NMR, and FT-IR spectroscopy. less
A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.
Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.
The ZIF code: ZIF-90 materials were successfully synthesized in an optimized water-based system. The particle size, ranging from micro- to nanoscales, could be controlled by different amounts of polyvinylpyrrolidone (PVP), Zn/imidazole-2-carboxaldehyde ratio and alcohol. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This manual describes the operation and theory of the PC-CARES (Personal Computer-Ceramic Analysis and Reliability Evaluation of Structures) computer program for the IBM PC and compatibles running PC-DOS/MS-DOR OR IBM/MS-OS/2 (version 1.1 or higher) operating systems. The primary purpose of this code is to estimate Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities. Included in the manual is the description of the calculation of shape and scale parameters of the two-parameter Weibull distribution using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. The methods for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull line, as well as the techniques for calculating the Batdorf flaw-density constants are also described. 2ff7e9595c
Comments